
Horizontal Aggregations for Mining Relational
Databases

Dontu.Jagannadh, T.Gayathri, M.V.S.S Nagendranadh.
 Department of CSE

Sasi Institute of Technology And Engineering,Tadepalligudem,
Andhrapradesh, India.

Abstract: Existing SQL aggregations have limitations to
prepare data sets because they return one column per
aggregated group using group functions. A significant
manual effort using a compliant programming language is
required to build data sets, where a horizontal layout is
required. Earlier a simple, yet powerful,
methods(CASE,PIVOT,SPJ) to generate aggregated
columns in a horizontal tabular layout were developed.
Both CASE and PIVOT evaluation methods are
significantly faster than the SPJ method. We propose to
use a technique called generalized projections (GPs) to
improve the performance of SPJ method. The proposed
technique pushes down to the lowest levels of a query tree
aggregation computation, function computation and
duplicate elimination. It also creates aggregations in
queries that did not use aggregation to begin with. It
unifies set and duplicate semantics, and helps in better
understanding aggregations. It improves SPJ performance
significantly since applying aggregations early in query
processing can provide significant performance
improvements.

I.INTRODUCTION

 Building a suitable data set for data mining
purposes is a time-consuming task. This task generally
requires writing long SQL statements or customizing
SQL code if it is automatically generated by some tool.
There are two main ingredients in such SQL code: joins
and aggregations. The most widely-known aggregation
is the sum of a column over groups of rows. There exist
many aggregation functions and operators in SQL.
Unfortunately, all these aggregations have limitations to
build data sets for data mining purposes. The main
reason is that, in general, data sets that are stored in a
relational database (or a data warehouse) come from
On-Line Transaction Processing (OLTP) systems where
database schemas are highly normalized. Based on
current available functions and clauses in SQL, a
significant effort is required to compute aggregations.
Such effort is due to the amount and complexity of SQL
code that needs to be written, optimized and tested.
Standard aggregations are hard to interpret when there

are many result rows. To perform analysis of exported
tables into spreadsheets it may be more convenient to
have aggregations on the same group in one row. With
such limitations in mind, we propose a new class of
aggregate functions that aggregate numeric expressions
and transpose results to produce a data set with a
horizontal layout. Functions belonging to this class are
called horizontal aggregations.
 Horizontal aggregations represent an extended
form of traditional SQL aggregations, which return a set
of values in a horizontal layout instead of a single value
per row. Horizontal aggregations provide several unique
features and advantages. First, they represent a template
to generate SQL code from a data mining tool. This
SQL code reduces manual work in the data preparation
phase in a data mining project. Second, since SQL code
is automatically generated it is likely to be more
efficient than SQL code written by an end user. Third,
the data set can be created entirely inside the DBMS.
Horizontal aggregations just require a small syntax
extension to aggregate functions called in a SELECT
statement. Alternatively, horizontal aggregations can be
used to generate SQL code from a data mining tool to
build data sets for data mining analysis.
 To perform horizontal aggregation, SPJ
method is implemented with generalized Projections.
GPs capture aggregations, group- conventional
projection with duplicate elimination (distinct), and
duplicate preserving projections. We develop a
technique for pushing GPs down query trees of Select-
project-join may use aggregations like max, sum, etc.
and that use arbitrary functions in their selection
conditions. Our technique pushes down to the lowest
levels of a query tree aggregation computation,
duplicate elimination, and function computation.

II. DEFINITIONS

Let F be a table having a simple primary key K
represented by an integer, p discrete attributes and one
numeric attribute: F(K;D1; …..;Dp;A). In OLAP terms,
F is a fact table with one column used as primary key, p
dimensions and one measure column passed to standard
SQL aggregations. F is assumed to have a star schema

Dontu.Jagannadh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3483-3487

3483

to simplify exposition. Column K will not be used to
compute aggregations. Dimension lookup tables will be
based on simple foreign keys. That is, one dimension
column Dj will be a foreign key linked to a lookup table
that has Dj as primary key. Input table F size is called
N. That is, |F| = N. Table F represents a temporary table
or a view based on a ,star join, query on several tables.

III. HORIZONTAL AGGREGATIONS

 Horizontal aggregations just require a small
syntax extension to aggregate functions called in a
SELECT statement. Alternatively, horizontal
aggregations can be used to generate SQL code from a
data mining tool to build data sets for data mining
analysis.

Our main goal is to define a template to
generate SQL code combining aggregation and
transposition (pivoting). A second goal is to extend the
SELECT statement with a clause that combines
transposition with aggregation. A method, SPJ method,
is used to evaluate horizontal aggregations which relies
on relational operations. That is, select, project, join and
aggregation queries. In order to evaluate this query the
query optimizer takes three input parameters: (1) the
input table F, (2) the list of grouping columns L1;…. ;Lm
, (3) the column to aggregate (A). In a horizontal
aggregation there are four input parameters to generate
SQL code: 1) the input table F, 2) the list of GROUP
BY columns L1; …… ;Lj , 3) the column to aggregate
(A), 4) the list of transposing columns R1; … ; Rk.
 we extend standard SQL aggregate functions
with a .transposing. BY clause followed by a list of
columns (i.e. R1; … ; Rk), to produce a horizontal set of
numbers instead of one number. Our proposed syntax is
as follows.

SELECT L1; …; LJ, H(A BY R1; … ; Rk)
FROM F
GROUP BY L1; … ; LJ;

 Here,H() represents some SQL aggregation
(e.g. sum(), count(), min(), max(), avg()). The function
H() must have at least one argument represented by A,
followed by a list of columns. The result rows are
determined by columns L1; … ; LJ in the GROUP BY
clause if present. Result columns are determined by all
potential combinations of columns R1; … ; Rk, where k
= 1 is the default.
 In order to get a consistent query evaluation it
is necessary to use locking. The main reasons are that
any insertion into F during evaluation may cause
inconsistencies: (1) it can create extra columns in FH,
for a new combination of R1; … ; Rk; (2) it may change
the number of rows of FH, for a new combination of L1;

… ; LJ ; (3) it may change actual aggregation values in
FH.

The horizontal aggregation function H() returns
not a single value, but a set of values for each group L1;
… ; LJ. Therefore, the result table FH must have as
primary key the set of grouping columns { L1; … ; LJ}
and as non-key columns all existing combinations of
values R1; … ; Rk.

A horizontal aggregation exhibits the following
properties:
1) n= | FH |matches the number of rows in a vertical
aggregation grouped by L1; … ;Lj .
2) d = | πR1,….,Rk (F) |
3) Table FH may potentially store more aggregated
values than FV due to nulls. That is, | FV | ≤ nd.
 DBMS limitations: There exist two DBMS
limitations with horizontal aggregations: reaching the
maximum number of columns in one table and reaching
the maximum column name length when columns are
automatically named. On the other hand, the second
important issue is automatically generating unique
column names. However, these are not important
limitations because if there are many dimensions that is
likely to correspond to a sparse matrix (having many
zeroes or nulls) on which it will be difficult or
impossible to compute a data mining model. The
column name length issue can be solved by generating
column identifiers with integers and creating a
description table that maps identifiers to full
descriptions, but the meaning of each dimension is lost.
An alternative is the use of abbreviations, which may
require manual input.

IV SPJ METHOD

The SPJ method is interesting from a
theoretical point of view because it is based on
relational operators only. The basic idea is to create one
table with a vertical aggregation for each result column,
and then join all those tables to produce FH. We
aggregate from F into d projected tables with d Select-
Project-Join-Aggregation queries (selection, projection,
join, aggregation). Each table FI corresponds to one
subgrouping combination and has
{L1; … ;Lj} as primary key and an aggregation on A as
the only non-key column. It is necessary to introduce an
additional table F0, that will be outer joined with
projected tables to get a complete result set. We propose
two basic sub-strategies to compute FH. The first one
directly aggregates from F. The second one computes
the equivalent vertical aggregation in a temporary table
FV grouping by L1; … ;Lj ; R1; … ; Rk. Then horizontal
aggregations can be instead computed from FV , which
is a compressed version of F, since standard
aggregations are distributive .

Dontu.Jagannadh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3483-3487

3484

Fig : Main steps of methods based on FV (un
optimized).

Select Distinct

R1,……,Rk

Fig : Main steps of methods based on FV (optimized).

We now introduce the indirect aggregation

based on the intermediate table FV , that will be used for
the SPJ method. Let FV be a table containing the vertical
aggregation, based on L1; … ; LJ; R1; … ; Rk. Let V()
represent the corresponding vertical aggregation for H().
The statement to compute FV gets a cube:

INSERT INTO FV
SELECT L1; … ; LJ ; R1; … ; Rk V(A)
FROM F
GROUP BY L1; … ; LJ; R1; … ; Rk;

Table F0 de_nes the number of result rows, and builds
the primary key. F0 is populated so that it contains
every existing combination of L1; … ; LJ. Table F0 has
{ L1; … ; LJ } as primary key and it does not have any
non-key column.

INSERT INTO F0
SELECT DISTINCT L1; … ; LJ
FROM {F| FV };

In the following discussion I € {1;… ; d}. we use h to
make writing clear, mainly to define boolean

expressions. We need to get all distinct combinations of
subgrouping columns R1; … ; Rk, to create the name of
dimension columns, to get d, the number of dimensions,
and to generate the boolean expressions for WHERE
clauses. Each WHERE clause consists of a conjunction
of k equalities based on R1 ; … ;Rk.

SELECT DISTINCT R1; … ;Rk
FROM {F|FV};

Tables F1; … ; Fd contain individual
aggregations for each combination of R1; … ;Rk. The
primary key of table FI is { L1; … ; LJ }.

INSERT INTO FI

SELECT L1; … ;Lj ; V (A)
FROM {F|FV}
WHERE R1 = v1I AND .. AND Rk = vkI
GROUP BY L1; … ;Lj ;

Then each table FI aggregates only those rows that
correspond to the Ith unique combination of R1; … ;Rk,
given by the WHERE clause. A possible optimization is
synchronizing table scans to compute the d tables in one
pass. Finally, to get FH we need d left outer joins with
the d + 1 tables so that all individual aggregations are
properly assembled as a set of d dimensions for each
group. Outer joins set result columns to null for missing
combinations for the given group. In general, nulls
should be the default value for groups with missing
combinations. We believe it would be incorrect to set
the result to zero or some other number by default if
there are no qualifying rows. Such approach should be
considered on a per-case basis.

INSERT INTO FH

SELECT
F0.L1; F0.L2; … ; F0.LJ;
F1.A; F2.A; … ; Fd.A
FROM Fd

LEFT OUTER JOIN F1

ON F0.L1 = F1.L1 and … and F0.LJ = F1.LJ
LEFT OUTER JOIN F2
ON F0.L1 = F2.L1 and … and F0.LJ = F2.LJ
….
LEFT OUTER JOIN Fd

ON F0.L1 = Fd.L1 and …. and F0.LJ = Fd.LJ ;

This statement may look complex, but it is easy to see
that each left outer join is based on the same columns
L1; … ;Lj .
 To improve the performance of SPJ , We
introduce the notion of a generalized projection that
unifies duplicate eliminating projections corresponds to
the SQL distinct adjective, duplicate preserving
projections, groupby, and aggregations, in a common

Select Distinct
R1,……,Rk

SPJ
d left joins

Compute FH

Compute FV

SPJ
d left joins

Compute FH

Dontu.Jagannadh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3483-3487

3485

framework.

 V. GENERALIZED PROJECTION

 Aggregations in SQL are closely
related to the relational projection operator.
Aggregations as defined in the SQL standard also
produce a new relation given an input relation, by
manipulating attributes of the input relation.
 We introduce a generalized projection
operator, denoted by the symbol π , that is similar to
aggregation operator. A GP takes as its argument a
relation R and outputs a new relation based on the
subscript of the GP. The subscript specifies the
computation to be done on R. The subscript has two
parts:
1. A set of groupby components. We refer to them as
components and not attributes because they may be
functions of attributes and not just attributes. For
instance, the GP πA*B (R) is written as the following
SQL query:

select (A*B) from R groupby (A*B).
2. A set of aggregate components. For example, we can
write the GP πD,max(S) (R) as the query:
select D, max(S) from R groupby D.

Here D is the only groupby component and
max(S) is the only aggregate component. It is simple to
observe that a GP has exactly one tuple for each value
of the groupby components and thus does not produce
any duplicates in its output. Here class of queries
expressed in a qyery tree. The permitted query trees
have ve types of nodes: selection nodes, projection
nodes, cross-product nodes, groupby nodes, and
aggregate-groupby node pairs.

The topmost node in tree is always a
projection. This projection is the GP that is pushed
down the query tree. Projections may preserve
duplicates or discard them.. Selection nodes eliminate
tuples from the input relation, groupby nodes do
projection+duplicate elimination, and cross-product
nodes output the cross product of two input rela- tions.
Aggregate- groupby node pairs have a groupby node
followed by an aggregate node. An aggregate-groupby
node pair produces as output a relation with one tuple
for every distinct value in the input relation of the
groupby attributes.
 GPs are incorporated into query trees using a
two step process:
1. Push GPs down a query tree and annotate the query
tree with a GP above each node in the tree.
2. Rewrite the annotated query tree to incorporate the
GPs that the query optimizer chooses to evaluate and to
eliminate all other GPs introduced in the push-down
process.
 We implement top-down pass technique for
pushing GPs down a query tree in the form of a table

that gives the algebraic transformations needed for
pushing GPs. After the top-down pass associates a GP
with some or all nodes of the query tree, the query
optimizer decides which GPs improve the query plan.
The other GPs are removed from the tree.

VI PERFORMANCE ISSUE

 No optimization technique reduces the cost of
query execution in all cases. There are always cases
where the cost of doing the optimization is greater than
the benefit.

Our algorithm, Generalized Projections , works
best on queries when the groupby attributes we push
down do not have too many distinct values in the
underlying relation. Most queries are not interested in
individual tuples of this relation, but rather aggregate
properties of this relation. Thus in most cases, we need
to do a groupby on a non-key attribute of this relation.
When this relation is joined with some other relation,
that need not be aggregated. In such cases, our
technique would reduce considerably the size of the
massive table before we did a join. It can be argued that
in such cases a join algorithm like a hash join could be
used to achieve a similar result. However, hash joins are
dificult to implement in practice and not commonly
implemented. Single table aggregations being a
commonly used feature of SQL exist in most systems.
Our technique only requires the use of these operators.
In addition, our technique works in many cases where
hash joins do not do well: for instance, if two very large
tables were joined.

Our optimization, when applied to query plans,
potentially interferes with join ordering, since we reduce
the size of the relations participating in the join.
However, the technique can be used advantageously as
a post join-ordering step. For greater performance gains
our push-down algorithm should be integrated with the
join ordering module.

CONCLUSION

This paper prescribes to improve the

performance of SPJ in terms of speed and scalability.
Horizontal aggregations represent an extended form of
traditional SQL aggregations, which return a set of
values in a horizontal layout instead of a single value
per row. Horizontal aggregations provide several unique
features and advantages. Horizontal aggregation is
performed by SPJ method with Generalized projection.
The SPJ method is interesting because it is based on
relational operators only. A technique called generalized
projections (GPs) is proposed, to improve the
performance of SPJ method. The technique pushes
down to the lowest levels of a query tree aggregation
computation, function computation and duplicate

Dontu.Jagannadh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3483-3487

3486

elimination. The permitted query trees have five types
of nodes: selection nodes ,projection nodes ,cross-
product nodes, groupby nodes, aggregate-groupby node
pairs. Efficiently evaluating horizontal aggregations
using left outer joins presents opportunities for query
optimization. Secondary indexes on common grouping
columns, besides indexes on primary keys, can
accelerate computation. Horizontal aggregations
produce tables with fewer rows, but with more columns.

 REFERENCES

[1] A. Witkowski, S. Bellamkonda, T. Bozkaya, G. Dorman, N.
Folkert, A. Gupta, L. Sheng, and S. Subramanian. Spreadsheets in
RDBMS for OLAP. In Proc. ACM SIGMOD Coference, pages 52.63,
2003.
[2] Venky Harinarayan ,Ashish Guptay “Generalized Projections: a
Powerful Query-Optimization Technique “
[3] “Vertical and Horizontal Percentage Aggregations”, Carlos
Ordonez Teradata, NCR San Diego, CA 92127, USA.
[4] G. Bhargava, P. Goel, and B.R. Iyer. Hypergraph based
reordering of outer join queries with complex predicates. In ACM
SIGMOD Conference, pages 304.315, 1995.
[5] U. Dayal, N. Goodman, and R. H. Katz. “An Extended Relational
Algebra with Control over Duplicate Elimination”. In Proceedings of
the ACM Symposium on Principles of Database Systems, 1982, pages
117-123.
[6] Venky Harinarayan and Ashish Gupta. Optimization Using Tuple
Subsumption. To appear in ICDT 95, January 1995.

Dontu.Jagannadh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3483-3487

3487

